Low-temperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite and identification of magnetosome chains
نویسندگان
چکیده
[1] Pelagic marine carbonates provide important records of past environmental change. We carried out detailed low-temperature magnetic measurements on biogenic magnetite-bearing sediments from the Southern Ocean (Ocean Drilling Program (ODP) Holes 738B, 738C, 689D, and 690C) and on samples containing whole magnetotactic bacteria cells. We document a range of low-temperature magnetic properties, including reversible humped low-temperature cycling (LTC) curves. Different degrees of magnetite oxidation are considered to be responsible for the observed variable shapes of LTC curves. A dipole spring mechanism in magnetosome chains is introduced to explain reversible LTC curves. This dipole spring mechanism is proposed to result from the uniaxial anisotropy that originates from the chain arrangement of biogenic magnetite, similar to published results for uniaxial stable single domain (SD) particles. The dipole spring mechanism reversibly restores the remanence during warming in LTC measurements. This supports a previous idea that remanence of magnetosome chains is completely reversible during LTC experiments. We suggest that this magnetic fingerprint is a diagnostic indicator for intact magnetosome chains, although the presence of isolated uniaxial stable SD particles and magnetically interacting particles can complicate this test. Magnetic measurements through the Eocene section of ODP Hole 738B reveal an interval with distinct magnetic properties that we interpret to originate from less oxidized biogenic magnetite and enrichment of a biogenic “hard” component. Co-occurrence of these two magnetic fingerprints during the late Eocene in the Southern Ocean indicates less oxic conditions, probably due to increased oceanic primary productivity and organic carbon burial.
منابع مشابه
Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite
Magnetite is both a common inorganic rock-forming mineral and a biogenic product formed by a diversity of organisms. Magnetotactic bacteria produce intracellular magnetites of high purity and crystallinity (magnetosomes) arranged in linear chains of crystals. Magnetosomes and their fossils (magnetofossils) have been identified using transmission electron microscopy (TEM) in sediments dating bac...
متن کاملRock magnetic criteria for the detection of biogenic magnetite
We rcpmt results on the magnetic properties of magnetites produced by magnetotaetie and dissimilatory iron-reducing bacteria. Magnetotactic bacterial (MTB) strains MS I. MV J and MV2 and dissimilatory iron-reducing bacterium ,train GS-15. grown in pure cultures, were used in this study, Our results suggest that a comhination of room tempnature coercivity analysis and low temperature remanence m...
متن کاملStructural purity of magnetite nanoparticles in magnetotactic bacteria
Magnetosome biomineralization and chain formation in magnetotactic bacteria are two processes that are highly controlled at the cellular level in order to form cellular magnetic dipoles. However, even if the magnetosome chains are well characterized, controversial results about the microstructure of magnetosomes were obtained and its possible influence in the formation of the magnetic dipole is...
متن کاملMagnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: transmission electron microscopy and magnetic observations
S U M M A R Y Stable single-domain (SD) magnetite formed intracellularly by magnetotactic bacteria is of fundamental interest in sedimentary and environmental magnetism. In this study, we studied the time course of magnetosome growth and magnetosome chain formation (0–96 hr) in Magnetospirillum magneticum AMB-1 by transmission electron microscopy (TEM) observation and rock magnetism. The initia...
متن کاملMagnetite Crystal Orientation in Magnetosome Chains
One-dimensional magnetic nanostructures have magnetic properties superior to non-organized materials due to strong uniaxial shape anisotropy. Magnetosome chains in magnetotactic bacteria represent a biological paradigm of such magnet, where magnetite crystals synthesized in organelles called magnetosomes are arranged into linear chains. Two-dimensional synchrotron X-ray diffraction (XRD) is app...
متن کامل